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NAVIER-STOKES COMPUTATIONS PAST A PROLATE 
SPHEROID AT INCIDENCE. 11: HIGH INCIDENCE CASE 

J. PIQUET AN11 P. QUEUTEY 
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SUMMARY 

The computation of incompressible three-dimensional viscous flow is investigated. An iterative fully 
decoupled technique based on the fully elliptic mode is applied to the Reynolds-averaged-Navier-Stokes 
equations (RANSE) written down in a non-orthogonal curvilinear body-fitted co-ordinate system. Results of 
the computations are compared with experimental data past a prolate spheroid at 30' incidence. 
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1. INTRODUCTION 

Vortical motions that will be discussed in the following result from the geometry of the body 
which packs the boundary layer into an area whose girthwise dimension decreases. External flow 
streamlines are, thus, made to converge rapidly in planes parallel to the surface. Then, continuity 
requires a large normal velocity, i.e. a large upward bend of the streamlines. This in turn creates 
a large normal pressure gradient towards the surface where the pressure is increased. These 
characteristics are connected to a dramatic thickening of the boundary layer which strongly 
interacts with the external inviscid flow. The actual wall pressure distribution differs significantly 
from that calculated by the potential flow theory, while the static pressure varies across the 
viscous zone. In the case of slender geometries, like ship hulls, fuselages or missiles at  incidence, 
the strong viscous-inviscid interaction occurs with boundary layer separation. While the bound- 
ary layer remains attached for about 90% of the body length at low angles of attack (say lo'), 
experimental results indicate that for high incidences, a longitudinal vortex motion promotes 
massive boundary layer separation and rolling up of vortex sheets on the leeward side of the 
body. The ability of Reynolds-averaged-Navier-Stokes equations (RANSE) to describe such 
a strongly concentrated vortical flow is demonstrated for one benchmark example, namely the 
6 :  1 prolate spheroid at 30' incidence and a Reynolds number of 7.2 x lo6. 

Such a case is interesting not only in its own right but also because it exhibits the previously 
mentioned complex flow phenomena on a particularly simple geometry. Also, the problem 
involves an analytical potential-flow solution. However, for the present high-incidence case with 
massive separation, this solution is valid only on the windside region close to the attachment 
node. Finally, detailed experimental measurements have been performed by Meier et ~ 1 . ; ' ~ ~  they 
include surface shear stresses, pressures and oil flows. 

In contrast to the 10" incidence case, reviewed in Reference 5, which has often been studied, 
only a few comparisons are available for the 30' case. Some conventional boundary layer 
calculations6-' are available with a Cebeci-Smith model of turbulence. However, they cover 
only a small region of the boundary layer. Some thin-layer Navier-Stokes calculations using 
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a Baldwin-Lomax model of turbulence are also pre~ented.'~'' They are very similar in that an 
approximate factorization of Beam and Warming type is used, with diagonalized implicit 
operators and dependent variables written in their incremental form. As a result, pentadiagonal 
matrices with fourth-order dissipation have to be solved. The method' compares the results of 
two different procedures which use the same centred differences for viscous fluxcs. For inviscid 
fluxes, two different finite volume schemes are compared: the first one is a flux difference splitting 
scheme of Roe type in which the Jacobian matrices of the inviscid fluxes are split backwards and 
forwards according to the signs of the eigenvalues of the matrices of the inviscid fluxes: upwind 
differencing here provides the artificial dissipation. The second scheme used also in Reference 11 
is based on a multistage Runge-Kutta time-stepping scheme for a space-centred difference 
method with a controlled, and explicitly added, amount of artificial dissipation. The outputs of 
the resulting code (CFL3D) are compared in Reference 10 with those of a different code 
(VOR3DI) which is based on the so-called pseudo-compressibility approach, following 
Reference 12. 

2. THE EQUATIONS 

2.1. The vector form of the basic equations 

given by equations (1 a) and (lb): 
The exact RANSE of continuity and momentum of the mean flow in dimensionless form are 

div U =0, (14 

(1b) 
dU 1 
S t  Re 
-+ v * uu + v p  + v -i=- v2u, 

where U, p and Uu are, respectively, the velocity vector, the pressure and the Reynolds stress 
tensor. The resulting turbulent closure problem is solved by means of an algebraic viscosity model 
in which the Reynolds stress is linearly related to the mean rate of strain tensor through an 
isotropic eddy viscosity as follows: 

Uu=f k l-\'T(VUfVTU). (2) 

vT=L2[vu: (Vu+VTU)], ( 3 4  

(3b) 

The damping coefficient is A' = 26, li = 0.41, n is the normal distance to the body, n+ = nReU, and 
L ,  is estimated as 0.086, where 6 is the thickness of the viscous layer. 6 is estimated from the 
velocity modulus u, at the 'edge' of the layer. u, is estimated as O.995um,,, if u,,, is the maximum 
of the modulus of the velocity. The effective Reynolds numbers Ref f  is defined by 
Ref f  = l/[vT + Re- '1. Other algebraic models have been also considered, namely the Baldwin and 
Lomax model13 with modifications suggested in Reference 14. 

A mixing-length model is used where vT is specified by 

where the mixing length L is specified over the whole viscous layer (from the wall to infinity) by 

L = L ,  [l -exp( - n + / A  ')] tanh (lin/L,). 

2.2. The equations in the transformed co-ordinate systenz 

For most practical applications, the complexity of the geometry prevents the use of Cartesian 
or cylindrical co-ordinate systems. Analytic or numerical co-ordinate transformations are highly 



A PROLATE SPHEROID AT INCIDENCE 3 

desirable in that they greatly facilitate the application of the boundary conditions and transform 
the physical domain in 0 which the flow is studied into a parallelepipedic computational domain 
{ti} = { t, q, c} .  The domain Cl becomes a parallelepiped in the computational space in which the 
discretization consists of stacked unit cubes of sides At'= 1, i=  1, 2, 3. Each unit cube of the 
computational space is a curvilinear hexahedron in the physical space, the 'sides' of which are 
measured by the modulii of the covariant vectors ai = &/at'. 

The transformation necessarily involves by-products from the covariant basis aj. Of particular 
interest are' ': 

(i) The area vectors b i =  aj x ak (i, j ,  k in cyclic order), which measure the oriented area of 
a small surface of unit sides along 5' and tk  on a t'=constant surface in the computational 
space. b' appears as constructed with two small triangle-like surfaces in the physical space. 

(ii) The Jacobian J of the transformation from the computational space of the co-ordinates 
{ti} to the physical space of the Cartesian co-ordinates {X"}. J measures the 'physical' 
volume of a parallelepiped of unit sides in the computational space and is evaluated in 
such a way that ai - bj=J 6;; this parallelepiped appears as an hexaedron-like volume in the 
physical space. 

(iii) The covariant and contravariant metric tensors gij = ai - aj;  g' j= g - ' b' - bj, where g the 
determinant of gij, is the square J 2  of the foredefined Jacobian. 

An important relationship to be used is the following simple restatement (3) of the chain-rule 
derivative formula: 

which allows the computation of the following standard operator: 

where Ua and [-I, are the physical Components in the Cartesian orthonormalized physical 
space (where contravariant and covariant components are identical so that they can be treated 
indifferently as subscripts and superscripts). In the following, the summation convention is used 
systematically, unless specified. 

If u"=$ with f i =  I ,  2 or 3,  equation (4) indicates that 

dbg 
-=0 for f l =  1 , 2  and 3. a(' 

Equation ( 5 )  is the so-called geometrical conservation law which amounts to the fact that, when 
properly discretized, areas of a discrete cell will sum to the total volume. Also, the gradient 
components are given by 

The curvilinear body-fitted C-type grid is generated using the solution of a set of Poisson 
equations, in a manner described in Reference 15. The partially transformed RANSE are given by 
the following relations in u strongly conservative form. The contravariant components of the 
velocity are defined by { U ' }  and the physical Cartesian components by (u"}. The continuity 
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equation is (8): 
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The standard form for the momentum equations is 

The following master equation, which will be used later, results easily from (9): 

where 

and 

s; vanishes if the grid is orthogonal (then g"=O for i # j )  and if the flow is laminar (\I-, =O). 

3. THE NUMERICS 

3.1. lntrotluction 

In order to build numerical schemes in which pressure and velocity share the same location 
without introducing the classical odd even decoupling problem for the pressure field, we consider 
the following one-dimensional model: 

d% -=O, F ( x ) = u ( x )  --h(x) '&-Y(X) 
d F  
dx dx 

which describes the conservation of the 'flux' F(x )  for the 'momentum' unknown <#(X). The source 
term Y ( x )  is included to simulate the pressure gradiont term. We consider the cell [0, h] over 
which a and h are assumed constant while .P(.x) is supposed to be piecewise constant: 

:.p(x) = P ,  '2.  (134 
or to vary linearly: 

,.P(X) = Po + ox. 0 = h -  ( P ,  -Po).  (13b) 

Using the boundary condition ,11(0)= U o ,  two successive quadratures of (12) yield the following 
'shape function': 
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where R = b/a. The value of the flux F then results from the boundary condition %(h) = U ,  : 

where y = Rh is the cell Reynolds number. In equations (14) and (13, the particular case (1 3a) 
results from the substitution (S): D=O; P0+P1,2. 

The 'shape function' (14) for &(x) is used to get the midpoint value U,,,; this defines the 
so-called reconstruction step 

=,ieYi2 Uo+2 U1-K(P1-Po), (16) 

where 
tanh (y/4) 

2b ' 

and K F  

By contrast to  the standard interpolation practice: U l i 2  = ( U ,  + U,)/2, the important character- 
istic of this equation is that, for o#O, U I J 2  is related not only to U o  and U1, but also to the nodal 
pressures Po and PI on both sides of point 1/2. Because these pressure values directly influence 
U,,,, this feature provides the coupling between pressure and velocity necessary to circumvent 
chequerboard oscillations. Equation ( 1  6) shows also that only the linearized part of the source 
term contributes to the reconstructed midvalue-the local constant Po in (14) disappears when 
(15) is substituted in (14)-and, with the substitution (S), the reconstruction (16) no longer 
depends on the local pressure gradient. 

It is instructive to examine the dependence of Ulj2 ,  as determined by (16), for limiting values of 
the mesh Reynolds number: it is found that 

h 
8u if y-O', then U l ~ 2 + ~ ( U o + U I ) - - ( P 1 - P o ) ,  ( 1 7 4  

(1 7b) 

( 174 

1 
2b 

1 
2b 

if ?/+a, then UIi2-+Uo-- (Pl  -Po),  

if y+ - a, then U 1 , 2 + U 1  +- ( P ,  -Po),  

In both cases, the dependence of the nodal velocities U o  and U1 moves from equal influence of U o  
and U1 at y =O toward a fully upwind influence as lyl-m, this effect being independent of (13a) 
or (1 3b). Also, the pressure gradient (source term) balances the dominant term in the equation, for 
D #O, and allows a more physical reconstruction. The asymptotic forms (17) are identical to those 
obtained in Reference 16. However, in contrast with that of Reference 16, the shape function (14) 
and the reconstructed midpoint kalue (16) are here exact solutions of the linear problem. 

It is now easy to obtain the one-dimensional scheme to be used when the flux balance is written 
over two adjacent cells DC and CU, according to Figure l(a): 

where F d  and F ,  are identified with Fd and F,, respectively, and evaluated from (15). 
Equation (18) allows the resulting scheme (19) to be obtained: 

C C U C  + C D U D  + C U U U  = r d ( p D  + r u ( P C -  P U ) ,  (19) 
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Figure l(a). One-dimensional model. Control volume; location of grid points U, C, D and of fluxes u, d 

Figure I(b). Two-dimensional example for the (shadowed) staggered volumes V ,  (surrounding d) and V, (surrounding n) 
used to estimate fluxes at  d and n, respectively. 0 ,  grid points and location of unknowns.--- , boundaries of the control 

volume 

'i 
tN 

Figure l(c). Two-dimensional example for the control volume. 0, grid points and location of unknowns.----, bound- 
aries of the control volume 

1 1 

where cp = l/(ey- I). 
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The truncation error of (1Y) and (20) defined by 

can be written as 

with 

Since h = h, = hd/x, the scheme (19) and (20) is formally first-order accurate on stretched grids and 
second-order accurate on uniform grids. The weighting coefficients CD, Cu, Cc provide the 
classical upwinding effect due to advection; the main difference with respect to the classical 
exponential scheme-produced on the convective form of the equation-is the introduction of 
the mean divergence term [dbldx] over the cell, namely: bd-b,. When ofO, a new embodied 
feature arises: the weighting coefficients r d  and Tu for the pressure gradients allow a built-in 
upwinding of the  source term depending on the value of cell Reynolds numbers y, and Yd. 

However, with (13a), the pressure gradient is frozen to P,-P, and no upwinding is present in 
the source term. Because (16) does not provide a pressure gradient, another reconstruction must 
supply (16). We first note that (19), still valid with rd=rU = 1/2, becomes 

The Rhie and Chow method,” which is used here consists in writing an equation similar to (22) at 
points d and u, namely: 

u d =  r?d + Kd [ P D -  Pc],  U,= 8, + K ,  [Pc-P”]. (23) 

U,=+[uc+U”-J, r? ~ - ~ [ U C + U D ] ,  -l KdFt[Kc+KD], Ku=+[Uc+ u,]. (24) 

The r? field is available at nodes C ,  D, U; it is reconstructed at d and u according to 
.- 

Before closing this section, we consider the treatment of the constraint dU/dx = 0 which mimics 
the incompressibility condition. The method is similar to that used for F (see (15)) and it makes 
use of Ud - U ,  = 0. With ( I  6), as well as with (23), a different pressure gradient is substituted into 
U d  and U,, for this reason, the chequerboard oscillation is avoided and the source equation takes 
the form 

(Kd+K,)Pc-K,jPD-K,Pu= -[r?d-r?,], (25) 
where 

Ud=IudUD+(1-l-d) UC, 8,=(1 -1bu) U ~ + ~ u u u C  

with 

while 
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if r~ # 0 and (24) if (T = 0. This relationship can be interpreted as a discrete solution of the elliptic 
problem: 

-d-  dx [ K g ] =  -div fi. 

The discrete solution of (26) is diagonally dominant in pressure; moreover, for (T # 0, the relative 
influence of nodal pressures in this mass equation diminishes when the mesh Reynolds number 
increases while div 6 becomes its upwind representation U , -  Uu. 

3.2. Multidiwiensional extension 

After a fully implicit time-discretization, the linearized momentum master equation (1 1)  
becomes 

where FL is the linearized time-discrete form off,' introduced in (1 1); namely: 

In the time derivative, the mean value over the control volume is lumped on its node centre. There 
are five contributions in the momentum flux FL, from the left to the right: the convective term, the 
'augmented' pressure term P = ( p  + 2k)/3 and the three transport terms. For each of them, the 
lagged contributions at previous time step tn-' are indicated. The two last terms of (28) define the 
time-explicit contribution (1 l),  sk. The'closure assumptions are the same as in Section 3.1. It is 
assumed that [JUi]"-' ,  J[v+vT]"-l g'j and J-' hi [VT(i?uPs/d<k)]n-l are approximated by 
their mean values at the centre of the staggered volume Vi (see Figure l(b)). This generalizes the 
assumption that u and h are constant in (12). The term P can be assumed either piecewise 
constant, as in (12b), or linear in the ti direction, in agreement with (13b). It can be noted that the 
face area bf, is available without approximation due to the geometric conservation property. 

The shape function (14) is used over volumes Vi to construct the fluxes Fiu ,  F,ld, F&, F&, Fze,  
F:w. The result is of course similar to (1 5). For instance, 

where Sid is the linearized time-discrete value of sk at point d. With the substitution (S), the 
underlined term is omitted and Pc in (29) becomes P d .  

The integration of the momentum equation (25) over the control volume around point C 
(Figure l(c)) gives (30): 

Substituting expressions like (29) into (30), in the same way as (15) was substituted into ( 1  8), yields 
a seven-point scheme for the velocity and for the pressure. 
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Now, the continuity equation involves the contravariant velocity component U':  

[Jul]d-[JU1]u+ [.Ju2],-[Ju2],+ [Ju3],- [JU3lW=O. (3 1) 
However, the reconstructed components are the Cartesian velocity components 
obtained using (16) or the p r~cedure . '~  Equation (16) gives rise to the correction equation: 

which are 

Equation (32) involves the pressure gradient in the 5" direction only, because of the one- 
dimensional character of the reconstruction. This is why the procedure" is preferred since it 
involves the full pressure gradient aP/i?X' in U' instead of only ZP/8[', as in (32). The needed 
contravariant velocity components, in (30), result from the Cartesian velocity components 
through 

JU'= bh @ at points d, u, n, s, e, w. (33) 

3.3. The pressure-velociij' coiipling problem 

The pressure-velocity coupling is handled with the so-called PIS0 procedure.' ' 
Step 1. In the cell-centred collocated grid approach, where velocity components, pressure and 

turbulent quantities are defined at the centre of the control volume, the momentum equations (31) 
can be written in the form (34) for the Cartesian velocity component ua, a= 1 (here and in the 
following, other components ct = 2, 3 which take a similar form, are omitted). 

In (34), as in the following, the index n has also been omitted so that u1 is the predicted Cartesian 
(non-solenoidal) velocity component at  time t". The coefficients C,. + J c / 5  are computed at  the cell 
centre, according to 

As indicated in the nomenclature, the summation over nb involves the velocity unknowns u1 at 
the six nodal points U, D, N, S ,  E, W. The pressure contribution in (34) is known from the 
previous iteration. Equations like (34) provide the predicted velocity components u' at grid 
points C, U, D, . . . from the given velocity U"-' and pressure fields. 

Step 2. It defines the velocity fr before projection. Following the step which led from (19) to 
(22 ) ,  equations like (34) can be recast under the form 

C,= -{(JU1):-' +(P ld]+(JU1)" , l  Y ) l u ) .  

Using (24), equations like (35) provide the Cartesian co-ordinates u:, a:, . . . of the field fr  on 
the faces d, u, n, s, e, w of the mass control volume. By means of (32), we obtain the reconstructed 
fluxes J c ' .  Hence, the projection equation can be written at each point d, u, n, s, e, w: 

[Ju']d=[JL?']d- Kd [9"]36 (36) atJ d '  

where Kd is given, as in (24), by the reconstr~ction,~'  namely: 
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The Kd coefficient then appears as independent of the corresponding velocity component, i.e. on 
(x in (32). This is because the same advection-diffusion operator applies to the three 0' equations 
see (9)). The gij terms, i # j ,  in (36) are generated by the misalignment between the co-ordinate lines 
and the directions of the velocity components. Now, in (36), the fluxes J U '  at the faces and the 
pressure field P at the grid points are not known yet. This equation is to be used now only to 
establish the equation for P. 

Step 3. Substituting (36) into the continuity equation (30) yields the pressure field which 
generalizes (26) and can be viewed as the solution of the continuous equation (37): 

The products J K  and JgiJ  are evaluated at midpoints d, u for i = j  = 1, n, s for i = j  = 2, e, w for 
i = j  = 3. Among the whole set of contributions to the pressure matrix, it is necessary to keep all the 
fluxes in order to allow a complete construction of the coefficients, i = j ,  because of the misalign- 
ment problem. Only the seven nodes: U, D, N, S, E, W, P, which come from second-order 
derivatives d 2 / d t ' d t J ,  i = j  are, thus, treated implicitly. Extradiagonal coefficients i # j  arising from 
crossed second-order derivatives Z2/.7tidtj are connected to the level of non-orthogonality of the 
grid. They are not retained implicitly but rather treated as source terms. As a result, diagonal 
dominance and symmetry of the discretized pressure matrix are easily obtained. The method used 
to reconstruct non-available Cartesian velocity components as well as the pressure solver to get 
the solution of (37) are the same as in Reference 19 and are not detailed here. Let us only mention 
that the discrete pressure solution of (37) is obtained by means of an incomplete LU-precon- 
ditioned conjugate gradient method. 

Step 4. The correction procedure uses the pressure field resulting from Step 3 to compute the 
divergence free velocity field. This projection step is written for the Cartesian velocity components 
rather than for the fluxes. Hence, equations like (35), which are used instead of (36), provide the 
updated velocity field V". 

4. RESULTS 

Conventional boundary layer calculations6-* that have been carried out break down over more 
than one-third of the viscous zone. They are sometimes limited in the leeside plane of symmetry 
(up to xfLzO.4 in Reference 7, to xfLxO.9 in Reference 8) and cover always only the windward 
part, for an angle 0 < 0,. Values of 8, depend on the numerical methods: 8, = 1 10" in Reference 7,0, 
is a linear function of x l L  in Reference 8 with 0 ,~150"  for xfL=@15 and 8,x120" for x/L=O.9 
using the potential pressure distribution, while 0, 120" with the experimental pressure distribu- 
tion. For Navier-Stokes type calculations, apart from Reference 9, where comparisons are 
qualitative and limited to surface data (their Figures 14 to 16), the only informative contribution 
is Reference 10. While Reference 1 1  addresses the case Re=7.7 x lo6, the results that are now 
presented focus, like References 6-10, on the case Re = 7.2 x lo6. A C-0-type grid is used with 
a 'sinh' stretching in the normal direction t2. The normalized spacing, along t2, is less than 
near the wall in order to resolve the thin viscous zones, present in high Reynolds number flows, 
down to the viscous sublayer. In order to indicate how results depend on the grid, calculations 
have been performed on a coarse grid (Plate 1) consisting of 70(<') * 41(<*) * 41(t3) points as well 
as on a fine grid with l2O(t1) * 60(t2) * 60(t3) points, where t1 is in the axial direction and t3 is 
along the girth. In all cases. the laminar calculations have been continued up to the experi- 
mentally observed transition line along which the turbulence model is activated. The fine grid 
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results have been obtained after a series of successive runs, each taking 2700 s on Cray 2. In the 
first run, the flow is laminar and 42 global iterations are performed, starting from uniform flow 
conditions. Then, the model13 is switched on and three runs allow to perform 92, 114, 114 
iterations. Finally, 82 iterations are performed with the corrections14 introduced. The flow is 
considered to be fully converged before the  correction^'^ are switched on: all the equation 
residuals have decreased everywhere by more than three orders of magnitude. After the switch of 
corrections,' the residuals decrease again and ultimately oscillate at levels similar to those 
obtained before the switch. Therefore, the CPU effort on Cray 2, per grid point and per fine grid 
iteration, varies between 15 x s, with an average of 7 x lop5 s, for a storage 
of 30 double precision Mwords. The radial sinh clustering is similar for both grids. In the 
girthwise direction, a sinh clustering makes resolution A0 decrease continuously from 8= 0", 
where A8x4" to 8= 180°, where A 8 ~ 2 " .  

The pressure coefficient in the symmetry plane is compared with experiments and with the 
potential flow solution in Figure 2. The agreement between data and the fine grid results is good 
on the windward side, at least for x / L  < 0.8, and the grid effect is low. In contrast, on the leeside, 
where the difference between potential flow and experiments indicates a high level of vis- 
cous-inviscid interaction, a very strong grid dependency is apparent as well as important 
discrepancies between predictions and data2' which start for low values of x/ L. The discrepancy 
between viscous flow calculations and experimental data is very reminiscent of that found in 
Reference 21. Although the scales plotted in Reference 10 do not allow an accurate comparison, 

and 5.48 x 

PRESSURE COEFFICIENT 
1.2 

1.0 

.6 

.4 

.2 
a u 

0 

-2 

-.4 

-.6 

-.8 

-1.0 

Leeside 0 = 1800 

Figure 2. Longitudinal distribution of the pressure coefficient C ,  in the vertical plane of symmetry; Re=7,2 x lo6; 
incidence 3 0 .  il, experimental dataz5 (taken from Reference 20); ---~, present computations with a Baldwin-Lomax 
model with modifications' (the dots indicate the location of grid points); cg, coarse grid computation: 
70(4 x 4q4) x 40([); fg, fine grid computation: 120(() x 60(9) x 60([). ----, potential flow distribution past the bare 

spheroid (taken from Reference 20). + + + + t , computations9 with CFL3D. 
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Figure 3. Girthwise distributions of the pressure coefficient C ,  for several xiL stations: (a) xiL-0,3801; (b) x;L=0.6061; 
(c) xif,=o-772.5,  (d) x;f,=0.9167. Re=7.2  x 10': incidence 30'. , I ,  C, experimental data4 (taken from Reference 22) , 
present RANSE computations (the dots indicate the location of grid points); Baldwin- Lomax model with modifi- 
cations;'" cg, coarse grid computation: 7 q 5 )  x 40(q) x 40(5): fg, fine grid computation: 120(5) x 60(q) x 60(i). ........__ present 
KAYSE coarse grid computations; Haldwin-Lomax model without modifications." - ---- , prcsent RANSE coarse grid 
computations; tanh model (3). , potential flow calcu- 

lations. +. TLNS  computation^'^ with CFL3D. X, TLNS coniputations'" with VOR3DI 
' -. present laminar flow coarse grid computations. -- 
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Figure 3. (Continued) 

VOR3DI gives a poor prediction, while present fine grid results and CE'L3D results are the best 
for x/L<O.7 and x:'L>O.7, respectively. Reasons for the shift with respect to experimental data 
are not clear. It may be observed that the discrepancy starts very early, about x /L=045 (19 x / L  
stations are clustered between 0 and 0.055) and that the flow remains laminar for x/L<O, l ,  where 
the shift is already established. The discrepancy with data should, therefore, not be attributed to 
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deficiencies in the turbulence modelling. It will be shown that the area x / L  < 0.2 is critical for the 
global flow behaviour; the reason being that transition occurs there, this probably causes the 
difference between computations and data. 

Girthwise pressure distributions are compared in Figure 3 for several values of x/L. Presented 
results show strong discrepancies between laminar flow and turbulent flow calculations. The level 
of global improvement provided by the  modification^'^ of the model13 is rather low on the coarse 
grid and predictions of the 'tanh' model (3Fwhich gives results identical to those of the 
Cebeci-Smith model-are worse than those of Baldwin and Lomax. This seems to indicate that, 
in spite of its lack of frame indifference, the vorticity is a better sensor for the turbulent eddy 
viscosity than the second invariant of the mean rate of strain tensor. On the windward side, the 
level of agreement between the present method and the experimental data is correct. The 
girthwise pressure gradients are well predicted independently of the tested turbulence models, 
while, although weak, the grid effect cannot be neglected. Results of CFL3D and VOR3DI appear 
also poorer. For higher values of 8, the experimental data which are modelled vary with x/L.  At 
midbody ( x / L  = 0.48 12) the laminar boundary layer becomes transitional at  about 8 z 60" and 
fully turbulent for 8 > 70". The level of viscous-inviscid interaction is now particularly high, for 
80" < 8 < 120°, and the quality of predictions strongly depends on the grid. The best results in the 
girthwise compression region, around 8 = 120", are the present fine grid ones. In spite of the well 
known inability of presently used turbulent models to predict the details of massive separation, 
their choice is not very important here. Around 8 = 1 30°, there is a local C, maximum associated 
with a minimum of skin friction and with separation (see e.g. Reference 1). The capture of this 
phenomenon depends on the quality of the grid but also on the correction*' whose effectiveness 
increases on finer grids. The C, maximum is also captured with CFL3D which uses a 75 x 49 x 49 
grid with A0 = 2" for 150" < 8 < 180", equivalent to the present method. In contrast, present coarse 
grid results, where A8 = 4.5", completely miss the phenomenon. More leewards, the local pressure 
peak is also captured by CFL3D and present fine grid calculations, CFL3D results being 
generally shifted leewards with respect to the present ones. More downstream, the local pressure 
peak around 8 = 160" weakens at x / L  = 0.725 and i t  has disappeared at x/L = 0.92; a plateau of 
almost constant pressure for 8 >  100" results (aP/%' is slightly negative at x/L =09167). The 
outputs of the present fine grid calculations tend to look better than those of CFL3D, while 
VOR3DI gives everywhere too negative C ,  values. However, both results share in common the 
fact that the peak is not completely forgotten for x/L>O*9. The reason for it might be the lack of 
fading memory mechanisms in the correction. l4 

Wall shear stress data are presented in Figures 4 and 5. Figure 4 presents comparisons with 
experimental data in the symmetry planes. While the agreement on the wind side is good, there is 
a discrepancy on the leeside turbulent region, consistent with the przssure differences noted in 
Figure 2. Results given by CFL3D and VOR3DI are also indicated; the level of disagreement with 
experimental data is important in view of their pressure results. 

Reasons are made clear in Figure 6 where girthwise shear stress distributions are considered. 
On the windward side, where the flow is laminar and the shear stress is low, the agreement with 
the experimental data is correct. Strong discrepancies with experimental data exhibited by 
CFL3D are due to an incorrect location of the switch to the turbulence model, while VOR3DI is 
computed as fully turbulent. The strong increase of shear in present calculations is, of course, due 
to transition (the 'stair' behaviour at x/L = 0.48, 60" < 0 < 80" is due to linear interpolations 
between the neighbouring computed laminar upstream station and the fully turbulent down- 
stream station). The strong decrease of friction from f3=70" to 8% 13&140" is associated with the 
strong pressure variation which drastically influences the accuracy of friction predictions. Thin 
boundary layer calculations* (TBL) performed with the experimental pressure distribution 
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Plate 2(a). Magnified view of computed skin friction lines over a fine grid, 12O(~)x6O(q)x6O(<), in the 
forward nose region; grid in green. View from inside the spheroid. Re = 7.2~10'; incidence 3C. 
. Baldwin-Lomax model with modifications."- line Aa emanating from the attachment node. - wall 

streamlines. _____  GSFmin line 

Plate 2@). View of the wall flow over the forward part of the prolate spheroid. Fine grid 120(~)~6O(~)x6O(<). 
Re = 7.2xlC inddence W. Baldwin-Lomax model with modifications." ----- grid lines (in black, pink 
or blue) or skin friction lines (in black). - particular skin friction line Aa issued from the node A or 
laminar local separation line passing through Po. - - - - in green, GSFmin line. - - - -in black, transition 
line (the flow is laminar on the left of this line, turbulent on the right).-+ in red, skin friction vectors at grid 
nodes. 0. starting point of GSFmin lines. 0. points where IC,l is a local maximum (a pass) over the 
GSFmin line. 0 in red, local minimum of skin friction. 0 in black, minimum skin friction, experimental 

data' X/L = 0.054; e = 13508; X/L = 0.138; 8 = 1240 



Plate 3 c ) .  Wall shear. surface colonred by thc normal velocity V-N at point 7 = 2 (the wall is q = I ) .  
In blue. V.N < 0. In red, V.N > 0. Pine grid, 120(~)~60Cqjx60(<). Re = 7.2~106; incidence 30". Baldwin-Lornax 
model with modifications." ~ - - - in green. GSFmin line.- laminar local separation line starting from 
P ,  and converging towards the turbulent local separation line ( V )  starting from V..O, starting pnint of CSFmin 
lines. 0, points ahere IC I is a local maximum o\,er the GSFmin line.. in red, local minimum olskin friction. 
0, rtiiriimurn skin friction, cxperirncntal data : s / L  = 0. I3X, 0 = 124"; s/l, = 0.306. 0 = 145"6: d L  = 0.3X, 0 

0.8 16, 0 = I OSJS 
133": .dL 0.461. 0 z 138": d I .  = 0.538. 0 z 121"S; ,w'L 0649. 0 1152;  dI, 0,725. 0 2% 110'5; d I ,  



Plate 2(d). Magnified view of the junction region (flow 
from the right). €'ine grid. 120(j)x60(q)xh0~5). Re = 
7 . 2 ~ 1 0 ~ ;  incidence 30'. Baldwin-1,omax model with 
modifications.' - grid line K =  30 or skin friction 
lines (in black). ~ - - - i n  green, CiSRilin linc. in red, 
skin friction vcctors at grid nodes. 8. starting point of 
CiSFmin lines. 0; semi pas< terminating a tiSFmin line. 

0 in red, local niinitriurn ol' skin friction 

Platc X e ) .  Wall <hew \tress surface coloured by the nortnal vclocity V*N at point q = 2 (the wall is q = I ) .  
In blue, V.N < 0. In red V.N > 0. In  preen. I V.N I < 10'. Fiiie grid 120(<)x6Oiq)x60(<). Re = 7 . 2 ~ 1 0 ~ ;  
incidence 30". Haldwin-Loniax tucidel with rnodiCications."- ~ . ~ i n  green. GSPrnin line. - somc wall 
streamlines. 0. starting point of GSFmin line (0. 0, passcs or s e m i  pashrs. 0 in red, local minimum of skin 

Criction 
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Figure 4. Longitudinal distribution of the skin friction coeficient CI in the vertical plane of symmetry; Re=7 .2  x 10'; 
incidence 30. I I ,  experimental data (taken from Reference 20); , present fine grid computations: 120(5) x 60(1) x 6O(i) 
with a Baldwin-~Lomax model with modi f i~dt ions '~  (the dots indicate the location of grid points).- - -, TLNS 

computations" with CFL3D. .--., TLNS computations with VOR3DI 

confirm that the pressure variations are the leading phenomenon for this area. They show the 
excellent computed levels of shear stresses at x / L  = 0.48, 6' d 120" before the separation-induced 
breakdown which occurs close to H = 130". In this respect, the mentioned better pressure 

friction that are not better than those resulting from the presently computed coarse grid pressure 
field. This is because only the pressure gradients are significant and they share similar girthwise 
values. On the leeside of this primary separation, there is again a strong increase of friction, the 
maximum of which, at  x/L=0.48, d z  160", is correlated to the local pressure peak. This explains 
the better behaviour of CFL3D and of the present fine grid results at this station, as an effect of an 
increased grid resolution. 

Figures 6 and 7 present the comparisons between the computed wall skin friction lines and 
those reconstructed from experimental data. In contrast to the 10' case, the wall flow remains 
always divergent away from the leeside plane. It is interesting to note the good overall agreement 
with experiments of both models when the finer grid is used. However, a careful inspection of 
results indicates several differences. The first streamline convergence, for x/ L < 0.2, which is 
a characteristics of the flow at high incidences is predicted more leewards without corrections 
than with corrections,14 while it is too weak with the coarsc grid results. I t  will be seen that this 
result which occurs already in a zone where the flow is not yet turbulent is due to transition. The 
primary and secondary separation lines occur too early, i.e. too far from the leeside plane of 
symmetry, although the correction14 improves their location with respect to the standard 
Baldwin-Lomax model. 
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Figure 5. Girthwise distributions of the friction coefficient Cf for several x/L stations: (a) x/L=0.48; (b) x/L=0.60; 
(c) x/L=077; (d) x/L=O92. Re=7.2 x lo6; incidence 3 0 .  3, Cf experimental data (taken from Reference 8 at x/L=0.48 
and Reference lo),-, present RANSE computations (the points indicate the location of grid points); Baldwin-Lomax 
modcl with modifi~ations;'~ cg, coarse grid computation 7q5) x 40(q) x 40(<); fg. fine grid computation: 
12qE) x 6O(q) x 6q;). ........., present RANSE coarse grid computations; Baldwin-Lomax model without  modification^.'^ 
___-- , present RANSE coarse grid computations; tanh model (3). ~ . , present laminar flow computations. 6, 
TLNS computations" with CFL3D. x ,  TLNS computations" with VOR3D1. +, TBL results.8 (b), breakdown of TBL 
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Figure 6. Comparison of skin friction lines reconstructed from experimentsZ with presently computed skin friction lines 
(transition switched on according to experiments). Re= 7.2 x 10'; incidence 30. Side views. (a) coarse grid computation: 
70(5) x 40(q) x 40((); Baldwin-Lomdx model with modifi~ations. '~ (h) fine grid computation: 120(<) x 6 q q )  x 60(;); 
Baldwin Lomax model with  modification^.'^ (c) skin friction lines reconstructed from experimental data; (d) fine grid 

computation 120(j) x 6O(q) x &lo([); Baldwin-Lomax model 

In order to shed some light on the transition effects and on the flow separation mechanisms 
that are present, a view of the fore part of the spheroid is presented in Plate 2. The magnified view 
of the nose region (Plate 2(a)) details the vicinity of the forward stagnation point A which is 
located at x A / L  = 0.65 x lo-'. A is a nodal attachment point since all skin friction lines, but one 
(Aa) are tangent to the line 8 = 0. The segment AN: 0 < x / L  < x,/L; 0 = 0, is the locus of points 
where JCfl presents a girthwise local minimum so that 13)CfI!o"B=0. From now, such a line is 
called a GSFmin line. There is another GSFmin line 3=0,(x/L),  h-u, which emanates from the 
nose along an angle 8\(0)% 138", passes through point U o  ( x / L = 5 7  x lop4; O =  153") where it is 
tangent to the skin friction line through U,. It then moves towards downstream while remaining 
on the windward side of H = 166"7 (5 = 53). I Cfl increases from A, where I Cf I = 0, to the nose N and 
from N to Uo, where I C f / = 6 - 7 0 x  Downstream of U,,, the GSFmin line crosses wall 
streamlines upstream of u, located somewhere about I (  = t)= 18, while the skin friction modulus 
decreases continuously until the point Po ( x / L  ~ 0 . 1 ;  5 = 24; 8 FZ 125"; [ = 3 9 ,  where 
Cfz0.52 x is reached (Plate 2(b)). 
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Figure 7. Comparison of ski? friction lincs reconstructed from experiments' with prescntly computed skin lriction lines 
(transition switched on accorai7g to experiments). Re = 7.2 x lob; incidence 3 0 .  Top views. (a) cornparison between fine 
grid computation 120(<) x 60jry) x 6qC); Ba!dwin -Lomax model (upper part) and skin friction lincs reconstructed kom 
experimental data (lower part). (h) Coarse grid computation; 7qj') x 4O(qj x 40([); Baldwin-Lomax model with modifi- 
c a t i o n ~ . ' ~  (c) comparison betwecn fine grid computation: 120(() x 60(q) x 60(5); Baldwin ~Lomax model with modih- 

cations'4 (upper part) and skin friction lines reconstructed from cxperimcntal data (lower part). 

Plate 2(b) presents a view of the skin friction vectors (in red) and of thc skin friction lines (in 
black), somewhat away from the nose region. Wall streamlines that (all) emanate from the nodal 
point of attachment appear to focus along the GSFmin line, downstream of u. The GSFmin line is 
located in excellent agreement with the two experimental data points.' Downstream of Po, that 
line is a local separation line (see e.g. Reference 23), being a particular limiting streamline that 
emanates from a nodal point of attachment. At  its starting point, Po, the skin friction modulus has 
a local minimum: ?lC,l/aU = 0, (? 1 Cf I/& = 0. Although the GSFmin line lies entirely in the laminar 
flow zone, it is clear that the flow pattern in this area is strongly affected by the transition line 
along which the turbulence is switched. Downstream of Po, the GSFmin line becomes distinct 
from the local laminar separation (LLS) line and follows the line of inflexion points of wall 
streamlines, located slightly upstream of the transition line and parallel to it. The GSFmin line 
finally terminates at point PI (x/L-0.41; t-37; 0=65'; [=18), where 1Cf1=2.35x has 
a local minimum (2 IC,l/i?O = C; I Cf l/d.x: = 0), while the transition lines continues more downstream 
(Plate 2(c)) into a region where the normal velocity V -N ,  close to the wall, is everywhere negative, 
as indicated by the blue colour. From now the streamwise and girthwise velocity components will 
be called U and W and be the contravariant components U 1  and U 3 ,  respectively. 

In contrast, the separation line suddenly bifurcates leewards into the turbulent zone. The 
abrupt bifurcation seems correlated to the fact that the normal velocity, close to the wall is 
positive upstream of Po (using the t e r m i n ~ l o g y , ~ ~  the separation line is the trace on the wall of 
a negative bifurcation surface); and it becomes negative slightly downstream of Po, as indicated 
by the transition red-blue (Plate 2(c)). The wall streamlines cross the transition ramp which is 
characterixd by a convergence of the flow towards the wall and enter the main 'turbulence valley' 
which is now studied. How the bifurcation surface manages the 90"-turn of the separation line 
cannot be answered on the basis of the present grid resolution. Although hardly plausible, 
a singular behaviour (saddle-node?) for 25 d I = < < 27; 36 < K = [ < 37 cannot be discarded. 

Another GSFmin line (V) emerges at point Vo ( x / L  E 0.079; ( = 22; H = 148"; i = 43,  where 
lCf1= 1 . 3 2 ~  l op3  and crosses the transition ramp which causes a strong increase of lCfl until 



20 J. PIQUET AND P. QUEUTEY 

point V1 (x/L % 0.127; ( = 25; 0 z 150"; [ = 46) where I Cfl % 3.56 x 10- '. While crossing wall 
streamlines, the GSFmin line enters a region where the flow converges towards the wall and the 
skin friction decreases slightly until point V, ( x / L ~ 0 . 2 0 8 ;  ( =29; 0% 157"; 5=49) where 
I Cf I z 2.68 x lop3.  V2 is a local skin friction minimum (a ICf 1/30 = 8 I Cf //ax = 0) and, hence, 
a singular point. Following the valley (V), downstream of V,, makes 1 Cf/  increase again until V3 
( x / L  zz 0.25; ( = 31; 8% 151"; [ = 46), where I Cf I % 2.8 x 10- '. Finally, I Cf I decreases continuously 
downstream of V3. For instance, at x / L  = 0.5, ( = 40, 0% 122", < = 35.  I Cf I % 2.07 x 10 3). The 
V-GSFmin line which is the bottom of this valley is, thus, the primary local turbulent separation 
(PLTS) line which starts from point V2. Downstream of Vz, wall streamlines, including the 
streamline previously identified with the LLS line, converge towards the PLTS line. Point V3 is 
characterized by the fact that the flow no longer diverges from the wall, along the PLTS line. 
Downstream of V,, the PLTS line follows the line of vanishing normal velocity. It must be noticed 
that along both GSFmin lines, V * N passes from positive to negative values when 8 increases. 
Also, the location of the V-GSF line is distant from experimental data' by at most one grid point 
in 0, i.e. by less than 3". 

A small I C, I valley (X) is present in the laminar zone but does not develop downstream because 
of the transition phenomenon. Instead, the corresponding GSFmin line starting at point Xo 
(x/L%O.O79; (=22; 0 %  166' 7; {=38), where I CII z 1.34 x l o p 3  terminates in the symmetry plane, 
at point X , .  Had the flow remained laminar, this valley (X) would have lead to a secondary 
separation line. 

A second lCfl valley is present in the turbulent region. The corresponding GSFmin line (W) 
starts at point Wo ( x / L ~ 0 . 2 5 ;  j=31;  U =  173'; [=56),  where lCfl ~ 4 . 2 3  x l ov3 .  The skin friction 
then decreases down to Wl(x/L%0.385; (=36; 0 ~ 1 7 3 " ;  [=56), where (Cf1%4.09x is 
a local skin friction minimum (3  1 Cf 1/20 = (31 Cfl/?x = 0). Again this GSFmin line is a (secondary) 
local turbulent separation line (SLTS line) downstream of W,,  along which the skin friction 
increases slowly with x/ L. The main difference between the SLTS line and the PLTS line which 
lies along (V) IS that the SLTS line is completely immersed in a zone where V - N < 0. 

At last GSFmin line (Q) occurs in the windward symmetry plane, starting from the forward 
stagnation point A. (Q) is a line of divergence for the flow along which the skin friction increases 
from A to Qo (x/Lz0.045; (= 19), where ICflzl .71 x lo-*, and decreases from Qo to Q1 
(X~LZO-5;  ( =40) where the skin friction is minimum: 1 Cf/  z 1.33 x lop2.  However, the flow 
remaining divergent, Q1 is not a starting point for a separation line. 

To summarize the analysis, it has been shown that a consideration of GSFmin lines makes the 
understanding of the wall flow easier. (i) Such lines become local separation lines at points Po, V,, 
W1 which are local skin friction minima. (ii) These local separation lines are either positive 
bifurcations: (W) or negative ones: (V) and (P). Upstream of the skin friction minima, the GSFmin 
lines pass through points Uo or V1 which can be called 'passcs' (V, is also a 'pass't(see Figurz 
8(a)). (iii) While the GSFmin line (U) starts at the node A, where I Cf I = 0, other GSF lines start at  
'semi-passes' Vo and Wo (see Figure 8(a)). (iv) Convergence towards separation lines always 
occurs downstream of local lCfl minima Po. V,, W1. (v) Upstream of these minima, wall 
streamlines cross GSFmin lines (U) and (W) through VoV2 and WOWI. (vi) However, the (P) 
GSFmin line is specific in that wall streamlines seem to focus towards it also upstream of Po while 
wall streamlines cross it  only upstream of a point u which does not display any specificity. (vii) 
While the GSFmin line (U) terminates early at a 'semi-pass' PI ,  other lines go far downstream. 

Since two local turbulent separation lines emerge from the fore part of the spheroid, i t  is 
interesting to follow these lines and to investigate how they terminate. Plate 2(d) presents 
a magnified view of the spheroid junction zone with its sting support. Plate 2(e) is similar to Plate 
2(c); however, grid points where /V-NI  is close to zero (< are now in green. The GSFmin 
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Figure 8(a). Schematic sketch of various points along thc GSFmin lines 

Figure X(b). Overall topography of singular points over the prolate spheroid (tlow from the right) 
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Figure 9. Comparison of secondary velocity plots in several transvcrse plane cross-sections: x/L,=O.5, 0.6, 0.7, 0.8, 0.9 
with available experimental da taz5  Re=7.2 x 10'; incidence 30'. Fine grid computation: 120(<) x 60(t7) x 60((); 

Baldwin-Lomax model with  modification^'^ 
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Figure 9. (Continued) 
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line (W), along which the secondary separation occurs, terminates at the semi-pass W2 
(x/L=0.916, (=66 ,  0=175’6, [=57), where ICf1=4.5x lo-’, W<O and V<O. More down- 
stream, the flow clearly presents a saddle node (focus) combination S-C related to the points of 
minimum skin friction (Plate 2(e)) Y,  (x/L=0.974, (=72, 0-138’3, 1=41), where 
lCfl=0.255 x lop3,  W>O and V<O and Y2 (x/L=0.986, 5=74, 0-133”, [=3Y), where 
IC,I=O.181 x W<O and V>O, on either side of the flow reversal region (where U changes 
its sign). Points Y1 and Y2 are located on a GSFmin line (Y) starting at the semi-pass Yo 
(x/L=O622, <=4S, O =  130”4, [= 38). Y2 is the starting point of the GSFmin line (Y’) which runs 
along the sting and coincides with the global separation line (Y’) emanating from S. The focal 
point Cis  about 8=  166”7; x/L=O.974, while the saddle S is between 127” and 135“, rather close 
from x/L = 0.98. Another point of minimum skin friction occurs in the leeward symmetry point, at 
the junction 0=180;  x/L=0.78, where ICfl%3.98 x W=O, V<O. This point is a nodal 
point of attachment r located in the zone of flow reversal (U  < 0) and necessarily coupled slightly 
upstream to a saddle s, where U =  W=O, also in the plane of symmetry. 

Plate 2(d) indicates that another saddle-node pair S’-C’ is associated to the GSFmin line (V) 
which terminates in the region of flow reversal, at point V4 (x/L = 0-98, 5 = 74, 0 = 68”9, < = 19), 
where I C,- z 1-45 x U <O, V>O, W>O. However, the topology is not as visible as on the 
leeside because of the lower vorticity level (also A0 is higher here). The two side saddle-node pairs 
are connected by the node A located close to the starting point Ub of the GSFmin line (U’) on the 
sting, i.e. in the region of flow reversal (U  < 0), close to x/L M 0.98, 5 = 74, 0 1 10”; [ = 30, where 

The GSFmin line (Q), in the windward plane of symmetry, goes through the pass Q2 
(x/L=O.Y16, (=66) ,  where lCfl= 1.69 x lo-’. Downstream of Q1, ICfJ decreases until two skin 
friction minima close to the boundary ofthe flow-reversal region which is slightly more developed 
than on the leeside. These friction minima are Q3 (x/L=O967, t=72), where ICf/ ~ 0 . 8 2  x lo-’, 
UGO, V<O, W>O and Q4 (x/L=0.9865, 5=74), where ICfI=2.6x UGO, V<O, W>O. 
They indicate the presence of a saddle-node r’ s’ pair in the plane of symmetry. The complete 
topography of singular points is summarized in Figure 8(b). It appears very similar, although 
somewhat more complex, than that proposed in Reference 24. 

Secondary velocity plots, in surfaces < = constant corresponding to given wall values of 
x/L = 0.5, 0-6, 0.7, 0.8, are presented in Figure 9 with available corresponding experimental 
data.*’ Such results have been obtained using a bilinear interpolation of computed data in ordcr 
to plot velocity arrows in surface cross-sections i; =constant. Also the three-dimensional graphics 
software used for visualization makes it very difficult to provide a view angle in a direction strictly 
orthogonal to the spheroid, along its axis. For this reason, the cross-section is seen obliquely and 
appears as an ellipse. Although available experimental data are given in planes x /L= constant, 
the overall agreement appears qualitatively correct. I t  will be noted, however, that the centre of 
the main vortex is slightly too close from the wall at x / L =  0 5 ,  where the perspective effect and the 
surface distance (between the plane x/L=O-5 and the surface i;=40) are the weakest. This 
indicates that the wall divergence, away from the leeside plane of symmetry, is not intense enough. 
It is unfortunate that no velocity data are available, in order to quantify such differences. 

I C ~ I ~ I . ~ ~  10-3, v<o, WGO. 

5. CONCLUSION 

A generally fully elliptic numerical method for the solution of RANSE has been developed and 
applied to the lifting flow past a prolate spheroid. The method uses a system of numerically 
generated curvilinear co-ordinates; it retains the Cartesian velocity components (as dependent 
variables), a non-staggered grid and a seggregated approach in which a pressure solver couples 
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velocity and pressure fields, according to the so-called 'PISO' procedure. An LU-preconditioned 
conjugate gradient method improves the convergence of the pressure solver by an order of 
magnitude over standard relaxation techniques. The cpu computational effort per grid point is 
found to be roughly o f  ( r=3  x s per grid point on Cray 2, for 444 iterations. This value of 
(r has already been cut down by a factor greater than two. due to a more adequate fortran 
optimiLation.26 The following conclusions emerge from the study. 

The main features of the vortical flows occuring at a high incidence are captured. The grid 
effect, however present, is far more important than in the low incidence case. It determines to 
a certain extent the quality of capture of girthwise pressure evolutions in the massively separated 
leeward region. A detailed comparison of pressure fields and shear stresses with available 
experimental data has been conducted. The existence of massive separation has been found to 
give rise to serious discrepancies with respcct to experiments on the leeward side. In view of the 
well-known inability of turbulent models to account for massive separation, results can, however, 
be considered as satisfactory given the fact that the grid probably remains slightly too coarse both 
in the radial and in the circumferential direction. A detailed analysis of the flow topology has also 
been performed from the standpoint of the evolution of local JCfl minima in the girthwise 
direction. It has been confirmed that three local separation lines were present, one in the laminar 
zone which remains in the fore part of the spheroid, and two in the turbulent region which run 
along the whole spheroid. The ovcrall flow topography of singular points in the aft part of the 
spheroid has been finally established. 
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APPENDIX: NOMENCLATURE 

element area vector 
pressure coefficient (= - (p--pW)/0,5 p U $ )  
contravariant components of the metric tensor of the curvilinear co-ordinate 
system 
Jacobian D ( x ,  y, z ) /D(r ,  q, [) 
turbulent kinetic energy 
mixing length 
local normal distance to the wall 
pressure 
unknowns of the model differential problem (1 2) 
discrete approximation of pressure or of M 
Reynolds number 
local curvilinear abcissa along the wall streamline 
mean velocity vector 
discrete approximation of J# 
contravariant velocity components along ti: U ' =  U - b'/J 
physical Cartesian u, F, W velocity components 
Reynolds stress 
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Greek symbols 

7 time step 
4 ,  r,  i curvilinear co-ordinates ( I ,  t2, t3,  respectively 

Subscripts und superscripts 

C 

n 
nb 

1 

CI 

central nodal points 
index for contravariant components 
actual discrete time 
symbolic notation for momentum stencil neighbours of point C (see equation (34), 
nb varies from 1 to 6 since the six nodal points U, D. E, W, N, S arc involved) 
cardinal location of nodal points with respect to the current central station C 
upstream, downstream facets (along 5) of the mass control volume. 
upstream, downstream nodal points, other involved nodal points: N, S (along q); 

index for Cartesian components 
E, w (along 5) 
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